MetaTrader 4 - Indikatoren Moving Averages, MA - Indikator für MetaTrader 4 Der Moving Average Technical Indicator zeigt den durchschnittlichen Instrumentenpreis für einen bestimmten Zeitraum an. Wenn man den gleitenden Durchschnitt berechnet, schätzt man den Instrumentenpreis für diesen Zeitraum. Wenn sich der Preis ändert, steigt der gleitende Durchschnitt entweder an oder sinkt. Es gibt vier verschiedene Arten von gleitenden Durchschnitten: Einfach (auch als Arithmetik bezeichnet), Exponential, geglättet und linear gewichtet. Durchgehende Mittelwerte können für jeden sequentiellen Datensatz berechnet werden, einschließlich der Öffnungs - und Schlusskurse, der höchsten und niedrigsten Preise, des Handelsvolumens oder anderer Indikatoren. Es ist oft der Fall, wenn doppelte gleitende Mittelwerte verwendet werden. Das Einzige, wo sich gleitende Mittelwerte verschiedener Typen erheblich voneinander unterscheiden, ist, wenn Gewichtskoeffizienten, die den letzten Daten zugeordnet sind, unterschiedlich sind. Für den Fall, dass wir von einfachem gleitendem Durchschnitt sprechen, sind alle Preise des betreffenden Zeitraums gleich. Exponentielle und linear gewichtete Moving Averages legen mehr Wert auf die neuesten Preise. Die gängigste Art, den Preis gleitenden Durchschnitt zu interpretieren, ist, seine Dynamik mit der Preisaktion zu vergleichen. Wenn der Instrumentenpreis über seinem gleitenden Durchschnitt steigt, erscheint ein Kaufsignal, wenn der Preis unter seinen gleitenden Durchschnitt fällt, was wir haben, ist ein Verkaufssignal. Dieses Handelssystem, das auf dem gleitenden Durchschnitt basiert, ist nicht dafür ausgelegt, in den tiefsten Punkt des Marktes zu gelangen und seinen Ausgang direkt auf den Gipfel zu bringen. Es erlaubt, nach dem folgenden Trend zu handeln: bald zu kaufen, nachdem die Preise den Boden erreicht haben, und bald zu verkaufen, nachdem die Preise ihren Höhepunkt erreicht haben. Simple Moving Average (SMA) Einfach, mit anderen Worten, der arithmetische gleitende Durchschnitt wird berechnet, indem man die Preise der Instrumentenschließung über eine bestimmte Anzahl von Einzelperioden (z. B. 12 Stunden) zusammenfasst. Dieser Wert wird dann durch die Anzahl solcher Perioden dividiert. SMA SUM (CLOSE, N) N Wobei: N die Anzahl der Berechnungsperioden ist. Exponentieller Moving Average (EMA) Exponentiell geglätteter gleitender Durchschnitt wird berechnet, indem der gleitende Durchschnitt eines bestimmten Anteils des aktuellen Schlusskurses auf den vorherigen Wert addiert wird. Mit exponentiell geglätteten gleitenden Durchschnitten sind die neuesten Preise von mehr Wert. P-Prozent exponentieller gleitender Durchschnitt wird aussehen: Wo: SCHLIESSEN (i) der Preis des aktuellen Periodenabschlusses EMA (i-1) Exponentiell bewegter Durchschnitt der vorherigen Periodenabschlussphase P der Prozentsatz der Verwendung des Preiswerts. (SMA) Der erste Wert dieses geglätteten gleitenden Durchschnitts wird als der einfache gleitende Durchschnitt (SMA) berechnet: SUM1 SUM (CLOSE, N) Die zweiten und nachfolgenden gleitenden Durchschnitte werden nach dieser Formel berechnet: Wo: SUM1 ist die Gesamtsumme der Schlusskurse für N Perioden SMMA1 ist der geglättete gleitende Durchschnitt des ersten Stabes SMMA (i) ist der geglättete gleitende Durchschnitt des aktuellen Stabes (mit Ausnahme des ersten) SCHLIESSEN (i) ist der aktuelle Schlusskurs N ist der Glättungszeitraum Linear Weighted Moving Average (LWMA) Im Falle des gewichteten gleitenden Durchschnitts sind die neuesten Daten mehr wert als frühere Daten. Der gewichtete gleitende Durchschnitt wird durch Multiplikation jedes der Schlusskurse innerhalb der betrachteten Serie mit einem gewissen Gewichtungskoeffizienten berechnet. LWMA SUM (Schließen (i) i, N) SUM (i, N) wobei: SUM (i, N) die Gesamtsumme der Gewichtskoeffizienten ist. Bewegliche Mittelwerte können auch auf Indikatoren angewendet werden. Das ist, wo die Interpretation der Indikatorbewegungsdurchschnitte ähnlich der Interpretation der Preisbewegungsdurchschnitte ist: Wenn der Indikator über seinem gleitenden Durchschnitt steigt, bedeutet dies, dass die aufsteigende Indikatorbewegung wahrscheinlich weitergehen wird: Wenn der Indikator unter seinen gleitenden Durchschnitt fällt, ist dies der Fall Bedeutet, dass es wahrscheinlich weiter nach unten geht. Hier sind die Arten von sich bewegenden Mittelwerten auf dem Diagramm: Einfacher Moving Average (SMA) Exponentieller Moving Average (EMA) Geglätteter Moving Average (SMMA) Linearer gewichteter Moving Average (LWMA) Exponentieller Moving Average - EMA BREAKING DOWN Exponentieller Moving Average - EMA Der 12 - und 26-Tage-EMAs sind die beliebtesten Kurzzeitdurchschnitte, und sie werden verwendet, um Indikatoren wie die gleitende durchschnittliche Konvergenzdivergenz (MACD) und den prozentualen Preisoszillator (PPO) zu schaffen. Im Allgemeinen werden die 50- und 200-Tage-EMAs als Signale von Langzeittrends verwendet. Händler, die technische Analysen verwenden, finden bewegte Durchschnitte sehr nützlich und aufschlussreich, wenn sie richtig angewendet werden, aber schaffen Verwüstung, wenn sie unsachgemäß verwendet oder falsch interpretiert werden. Alle gleitenden Mittelwerte, die üblicherweise in der technischen Analyse verwendet werden, sind ihrer Natur nach hintere Indikatoren. Folglich sollten die Schlussfolgerungen, die aus der Anwendung eines gleitenden Durchschnitts auf eine bestimmte Marktkarte gezogen werden, darin bestehen, eine Marktbewegung zu bestätigen oder ihre Stärke anzugeben. Sehr oft, bis zu der Zeit, in der eine gleitende durchschnittliche Indikatorlinie eine Änderung vorgenommen hat, um einen bedeutenden Marktzugang zu reflektieren, ist der optimale Markteintritt bereits vergangen. Eine EMA dient dazu, dieses Dilemma zu einem gewissen Grad zu lindern. Weil die EMA-Berechnung mehr Gewicht auf die neuesten Daten setzt, umarmt sie die Preisaktion etwas fester und reagiert daher schneller. Dies ist wünschenswert, wenn eine EMA verwendet wird, um ein Handelseingangssignal abzuleiten. Interpretation der EMA Wie alle gleitenden durchschnittlichen Indikatoren sind sie für die Trends in den Märkten besser geeignet. Wenn der Markt in einem starken und anhaltenden Aufwärtstrend ist. Die EMA-Indikatorlinie zeigt auch einen Aufwärtstrend und umgekehrt für einen Down-Trend. Ein wachsamer Trader wird nicht nur auf die Richtung der EMA-Linie achten, sondern auch auf das Verhältnis der Änderungsrate von einem Bar zum nächsten. Zum Beispiel, da die Preiswirkung eines starken Aufwärtstrends beginnt zu glätten und umzukehren, beginnt die EMAs-Änderungsrate von einem Bar zum nächsten zu verkleinern, bis zu diesem Zeitpunkt die Indikatorlinie abflacht und die Änderungsrate Null ist. Wegen der nacheilenden Wirkung, bis zu diesem Punkt, oder sogar ein paar Takte vorher, sollte die Preisaktion bereits umgekehrt sein. Daraus folgt, dass die Beobachtung einer konsequenten Abnahme der Änderungsrate der EMA selbst als Indikator verwendet werden könnte, der dem Dilemma, das durch die nacheilende Wirkung der sich bewegenden Mittelwerte verursacht wurde, weiter entgegenwirken könnte. Gemeinsame Verwendungen der EMA EMAs werden häufig in Verbindung mit anderen Indikatoren verwendet, um signifikante Marktbewegungen zu bestätigen und ihre Gültigkeit zu beurteilen. Für Händler, die intraday und schnell bewegte Märkte handeln, ist die EMA mehr anwendbar. Häufig verwenden Händler EMAs, um eine Handelsvorspannung zu bestimmen. Zum Beispiel, wenn ein EMA auf einer Tages-Chart zeigt einen starken Aufwärtstrend, eine Intraday-Trader-Strategie kann nur von der langen Seite auf einem Intraday-Chart zu handeln. Exploring Die exponentiell gewichtete Moving Average Volatilität ist die häufigste Maßnahme Risiko, aber Es kommt in verschiedenen Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, siehe Volatilität verwenden, um zukünftiges Risiko zu beurteilen.) Wir haben Googles aktuelle Aktienkursdaten verwendet, um die tägliche Volatilität auf der Grundlage von 30 Tagen Lagerbestand zu berechnen. In diesem Artikel werden wir die einfache Volatilität verbessern und den exponentiell gewichteten gleitenden Durchschnitt (EWMA) diskutieren. Historische Vs. Implizite Volatilität Zuerst können wir diese Metrik in ein bisschen Perspektive bringen. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit Prolog ist, messen wir die Geschichte in der Hoffnung, dass es prädiktiv ist. Implizite Volatilität hingegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Lesung siehe die Verwendungen und Grenzen der Volatilität.) Wenn wir uns nur auf die drei historischen Ansätze konzentrieren (links oben), haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Bewerben Sie ein Gewichtungsschema Zuerst haben wir Berechnen Sie die periodische Rückkehr. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rückkehr in kontinuierlich zusammengesetzten Begriffen ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. h. der Preis heute geteilt durch den Preis gestern und so weiter). Dies führt zu einer Reihe von täglichen Renditen, von u i zu u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. In dem vorherigen Artikel (mit Volatility To Gauge Future Risk), haben wir gezeigt, dass unter ein paar akzeptablen Vereinfachungen, die einfache Varianz ist der Durchschnitt der quadrierten Renditen: Beachten Sie, dass dies summiert jede der periodischen Renditen, dann teilt diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, es ist wirklich nur ein Durchschnitt der quadratischen periodischen Rückkehr. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor ist (speziell 1 m), dann sieht eine einfache Varianz so aus: Die EWMA verbessert sich auf einfache Abweichung Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Gestern (sehr neuere) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch die Verwendung des exponentiell gewichteten gleitenden Durchschnitts (EWMA) behoben, bei dem neuere Renditen ein größeres Gewicht auf die Varianz haben. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Der als Glättungsparameter bezeichnet wird. Lambda muss kleiner als eins sein. Unter dieser Bedingung wird anstelle von gleichen Gewichten jede quadrierte Rendite mit einem Multiplikator wie folgt gewichtet: Zum Beispiel neigt RiskMetrics TM, ein Finanzrisikomanagement-Unternehmen, dazu, ein Lambda von 0,94 oder 94 zu verwenden. In diesem Fall ist das erste ( (1 - 0,94) (94) 0 6. Die nächste quadratische Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von Exponential in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muss) des vorherigen Tagegewichts. Dies stellt eine Varianz sicher, die gewichtet oder voreingenommen auf neuere Daten ist. (Um mehr zu erfahren, schau dir das Excel-Arbeitsblatt für Googles-Volatilität an.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google ist unten dargestellt. Die einfache Volatilität wirkt effektiv jede periodische Rendite um 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Kursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass Spalte P ein Gewicht von 6, dann 5.64, dann 5.3 und so weiter zuteilt. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die ganze Serie (in Spalte Q) zusammengefasst haben, haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und EWMA im Googles-Fall Sein signifikant: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (siehe die Kalkulationstabelle für Details). Anscheinend hat sich die Googles-Volatilität in jüngster Zeit niedergelassen, eine einfache Varianz könnte künstlich hoch sein. Heutige Varianz ist eine Funktion von Pior Days Variance Youll bemerken wir brauchten, um eine lange Reihe von exponentiell abnehmenden Gewichten zu berechnen. Wir werden die Mathematik hier nicht machen, aber eines der besten Features der EWMA ist, dass die ganze Serie bequem auf eine rekursive Formel reduziert: Rekursive bedeutet, dass heutige Varianzreferenzen (d. h. eine Funktion der vorherigen Tagesabweichung) ist. Sie finden diese Formel auch in der Kalkulationstabelle, und sie erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der vulkanischen Varianz (gewichtet durch Lambda) plus gestern quadrierte Rückkehr (gewogen von einem Minus Lambda). Beachten Sie, wie wir nur zwei Begriffe zusammenfügen: gestern gewichtete Varianz und gestern gewichtet, quadratische Rückkehr. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. RiskMetrics 94) zeigt einen langsamen Abfall in der Serie an - in relativer Hinsicht werden wir mehr Datenpunkte in der Serie haben und sie werden langsamer abfallen. Auf der anderen Seite, wenn wir das Lambda reduzieren, zeigen wir einen höheren Zerfall an: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, also kannst du mit seiner Empfindlichkeit experimentieren). Zusammenfassung Volatilität ist die momentane Standardabweichung eines Bestandes und die häufigste Risikometrität. Es ist auch die Quadratwurzel der Varianz. Wir können die Abweichung historisch oder implizit (implizite Volatilität) messen. Wenn man historisch misst, ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Abweichung ist, dass alle Renditen das gleiche Gewicht bekommen. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch die Zuordnung von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße verwenden, aber auch ein größeres Gewicht auf neuere Renditen geben. (Um ein Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionische Schildkröte.) Ein Erstgebot für ein bankrottes Unternehmen039s Vermögenswerte von einem interessierten Käufer, der von der Konkursgesellschaft gewählt wurde. Von einem Bieterpool aus. Artikel 50 ist eine Klausel im EU-Vertrag, in der die Schritte, die ein Mitgliedsland einnehmen muss, um die Europäische Union zu verlassen, umreißt. Großbritannien. Beta ist ein Maß für die Volatilität oder das systematische Risiko eines Wertpapiers oder eines Portfolios im Vergleich zum Gesamtmarkt. Eine Art von Steuern, die auf Kapitalgewinne von Einzelpersonen und Kapitalgesellschaften angefallen sind. Kapitalgewinne sind die Gewinne, die ein Investor ist. Ein Auftrag, eine Sicherheit bei oder unter einem bestimmten Preis zu erwerben. Ein Kauflimitauftrag erlaubt es Händlern und Anlegern zu spezifizieren. Eine IRS-Regel (Internal Revenue Service), die strafrechtliche Abhebungen von einem IRA-Konto ermöglicht. Die Regel erfordert, dass. Wie berechnen gewichtete Moving Averages in Excel mit exponentiellen Glättung Excel Data Analysis für Dummies, 2nd Edition Das Exponential Glättung Werkzeug in Excel berechnet den gleitenden Durchschnitt. Die exponentielle Glättung gewichtet jedoch die in den gleitenden Durchschnittsberechnungen enthaltenen Werte, so dass neuere Werte einen größeren Einfluss auf die Durchschnittsberechnung haben und alte Werte einen geringeren Effekt haben. Diese Gewichtung wird durch eine Glättungskonstante erreicht. Um zu veranschaulichen, wie das Exponential-Glättungswerkzeug funktioniert, nehmen wir an, dass Sie die durchschnittliche tägliche Temperaturinformation noch einmal betrachten. Um die gewichteten Bewegungsdurchschnitte mit einer exponentiellen Glättung zu berechnen, gehen Sie wie folgt vor: Um einen exponentiell geglätteten gleitenden Durchschnitt zu berechnen, klicken Sie zuerst auf die Schaltfläche Daten tab8217s Datenanalyse. Wenn Excel das Dialogfeld Datenanalyse anzeigt, wählen Sie aus der Liste die Option Exponentielle Glättung aus und klicken dann auf OK. Excel zeigt das Dialogfeld Exponentielle Glättung an. Identifizieren Sie die Daten. Um die Daten zu identifizieren, für die Sie einen exponentiell geglätteten gleitenden Durchschnitt berechnen möchten, klicken Sie in das Textfeld Eingabebereich. Dann identifizieren Sie den Eingabebereich, indem Sie entweder eine Arbeitsblattbereichsadresse eingeben oder den Arbeitsblattbereich auswählen. Wenn Ihr Eingabebereich eine Textbeschriftung enthält, um Ihre Daten zu identifizieren oder zu beschreiben, markieren Sie das Kontrollkästchen Etiketten. Geben Sie die Glättung konstant. Geben Sie den Glättungs-Konstantenwert im Textfeld Dämpfungsfaktor ein. Die Excel-Hilfedatei schlägt vor, dass Sie eine Glättungskonstante zwischen 0,2 und 0,3 verwenden. Vermutlich aber, wenn du dieses Tool benutzt hast, hast du deine eigenen Vorstellungen darüber, was die richtige Glättungskonstante ist. (Wenn Sie sich über die Glättungskonstante ahnungslos machen, dann sollten Sie dieses Tool nicht benutzen.) Sagen Sie Excel, wo die exponentiell geglätteten gleitenden Durchschnittsdaten platziert werden sollen. Verwenden Sie das Textfeld Ausgabebereich, um den Arbeitsbereich zu identifizieren, in den Sie die gleitenden Durchschnittsdaten platzieren möchten. Im Beispiel des Arbeitsblattes platzieren Sie beispielsweise die gleitenden Durchschnittsdaten in den Arbeitsblattbereich B2: B10. (Optional) Diagramm die exponentiell geglätteten Daten. Um die exponentiell geglätteten Daten darzustellen, markieren Sie das Kontrollkästchen Diagrammausgabe. (Optional) Geben Sie an, dass Standardfehlerinformationen berechnet werden sollen. Um Standardfehler zu berechnen, markieren Sie das Kontrollkästchen Standardfehler. Excel setzt Standardfehlerwerte neben den exponentiell geglätteten gleitenden Mittelwerten. Nachdem Sie festgelegt haben, welche gleitenden durchschnittlichen Informationen Sie berechnen möchten und wo Sie es platzieren möchten, klicken Sie auf OK. Excel berechnet gleitende durchschnittliche Informationen.
No comments:
Post a Comment